Gauss elimination algorithm for interval matrix
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Dual Face Algorithm Using Gauss-jordan Elimination for Linear Programming
The dual face algorithm uses Cholesky factorization, as would be not very suitable for sparse computations. The purpose of this paper is to present a dual face algorithm using Gauss-Jordan elimination for solving bounded-variable LP problems.
متن کاملInverse Matrix using Gauss Elimination Method by OpenMP
OpenMP is an implementation program interface that might be utilized to explicitly immediate multi-threaded and it shared memory parallelism. OpenMP platform for specifications multi-processing via concurrent work between interested parties of hardware and software industry, governments and academia. OpenMP is not needs implemented identically by all vendors and it is not proposed for distribut...
متن کاملAn Explicit Construction of Gauss-Jordan Elimination Matrix
A constructive approach to get the reduced row echelon form of a given matrix A is presented. It has been shown that after the kth step of the Gauss-Jordan procedure, each entry akij(i 6= j, j > k) in the new matrix A can always be expressed as a ratio of two determinants whose entries are from the original matrix A. The new method also gives a more general generalization of Cramer’s rule than ...
متن کاملtriangular decomposition of the admittance matrix, gauss elimination method and the general star-mesh transformation
the star-mesh transformation allows the reduction of nodes in an electrical circuit. the gauss elimination method allows the reduction of unknowns in a system of linear equations . triangular decomposition can be used to find the inverse of a matrix. in this paper the coherence between these methods are discussed. it is shown that the gauss elimination method gives the same formula for star-mes...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 1
صفحات 9- 15
تاریخ انتشار 2011-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023